

Wind. It means the world to us.™

V

RÜZGAR ENERJİSİ TEKNOLOJİSİNİN GEÇMİŞİ VE GELECEĞİ

Levent İshak Vestas Türkiye Kıdemli Servis Müdürü

Bir zamanlar....

İlk bilinen Rüzgar türbinleri 1100'lü yıllarda tarihteki yerini aldı.

Su taşımak ve buğday öğütme amaçlı olarak kullanılıyordu

Charles Brush's windmill of 1888, used for generating electricity.

The world's first megawatt-sized wind turbine near Grandpa's Knob Summit,, <u>Castleton, Vermont</u>

30 yıl önce 8000 kW için...

ΥΎ , , , , , , , , , , , *ΥΥΥΥΥΥΥΥΥΥΥΥΥ* Ϊ Ĭ Ϋ́Υ ΤΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥ N N N N אאאאא

Bugün artık tek bir türbin 8000 kW elektrik üretebilmekte

Wind. It means the world to us.™

GÜNÜMÜZDEKİ TÜRBİNLER

ITE

NACELLE

Vestas

ESKİ 2.5 MW'TAN AZ 3 KADEMELİ DİŞLİ KUTUSU YARI GÜÇ DÖNÜŞTÜRÜCÜ

MODERN 2.5 MW ÜSTÜ ÇOK KADEMELİ, YÜK DAĞITICILI DİŞLİ KUTUSU DOĞRUDAN TAHRİK MANYETİK ALTERNATÖRLER TAM GÜÇ DÖNÜŞÜMÜ KOMPAKT DİZAYN

GELECEK 6 MW ÜZERİ DEĞİŞKEN ORANLI DİŞLİ KUTULARI SUPERİLETKEN ALTERNATÖRLER

KULELER

Kablolu Kule

Üç Bacaklı Kule

Betonarme Yapılı Kule Kafes Kule

Silindirik Kule

Wind. It means the world to us.™

The LDST (Large Diameter Steel Tower) Concept

Due to a large diameter LDST can go to higher hub heights while reducing the usage of steel. Slicing each LDST section into 3 segments (re-assembled at site) is needed for transport issues

Large diameter

Hub height: By increasing the diameter using LDST the tower gets stiffer / stronger and can go to higher hub heights:

Cost:

By increasing the diameter the steel plate thickness can be reduced and still withstand the same loads. This decreases the amount of steel used and hence BoM compared to a standard steel tower

Production

LDST sections:

Each LDST section is composed of regular shells (i.e. tubes) with a larger diameter:

LDST section

Standard middle and upper sections:

The standard middle and upper sections are similarly composed of smaller shells. However, these regular sections also benefit from a larger diameter and reduced steel plate thickness

Transportation

Slicing:

Due to transport the LDST sections are sliced into three segments after production. Before slicing the sections vertical flanges are welded on and used to re-assemble on site:

Truck:

The standard middle and upper sections are transported similar to a standard steel tower. The LDST segments can be transported on relatively cheap flatbed trucks

At site

Re-assembly: The segments of each of the LDST sections are bolted (bolzen) together with longitudinal flanges:

Internals, platform, cables, Once the LDST sections have been re-assembled , their internals are mounted. Due to the slicing of the LDST sections it is not possible to mount their internals ex works. The standard middle and upper sections have their internals installed ex works

NREL (National Renewable Energy Labaratory) projection: the LCOE of U.S. wind power will decline by 25% from 2012 to 2030

ENERJİ BİRİM MALİYETİ - Haziran 2015 (USD/MWh)

Plant Type (USD/MWh)	Max	Median	Min
Ocean&&	250	240	230
Solar PV	250	110	60
Solar CSP	220		100
Natural Gas Combustion Turbine	200		140
Wind, offshore	200		100
Coal, integrated gasification, combined cycle	170		100
Fuel Cell	160		100
Coal, pulverized, scrubbed	150		60
Nuclear	130		90
Enhanced Geothermal	130		80
Distributed Generation	130	70	10
Biopower	110		90
Geothermal Hydrothermal&&	100		50
Hydropower&&	100	70	30
Natural Gas Combined Cycle	80		50
Wind, onshore	80		40
Blind Geothermal&&		100	
Small Hydropower&&		140	
Coal, pulverized, unscrubbed [^]		40	

FLOATING TURBINE

Vestas

Wind. It means the world to us.[™]

TEŞEKKUR EDERIZ

Copyright Notice

The documents are created by Vestas Wind Systems A/S and contain copyrighted material, trademarks, and other proprietary information. All rights reserved. No part of the documents may be reproduced or copied in any form or by any means - such as graphic, electronic, or mechanical, including photocopying, taping, or information storage and retrieval systems without the prior written permission of Vestas Wind Systems A/S. The use of these documents by you, or anyone else authorized by you, is prohibited unless specifically permitted by Vestas Wind Systems A/S. You may not alter or remove any trademark, copyright or other notice from the documents. The documents are provided "as is" and Vestas Wind Systems A/S shall not have any responsibility or liability whatsoever for the results of use of the documents by you.

Wind. It means the world to us.™