RÜZGAR TÜRBİNİ KANAT YUNUSLAMA AÇISI

ODTÜ

ANKARA

KONTROLCÜSÜ TASARIMI VE PERFORMANS ANALİZİ

Öğr. Gör. Dr. Mustafa ŞAHİN ODTÜ RÜZGEM Doç. Dr. İlkay YAVRUCUK ODTÜ Havacılık ve Uzay Mühendisliği Bölümü

SUNUM BAŞLIKLARI

- Yatay Eksenli Rüzgar Türbinlerinde Kontrol Sistemi
- Türbin Çalışma Bölgeleri ve Kontrol Amaçları
- MS Bladed Rüzgar Türbin Simülasyon Modeli
- Modern Türbinlerde Kanat Yunuslama Açısı Kontrolü
- Türbin Sisteminin Linearizasyonu
- Kanat Yunuslama Açısı Kontrolcüsü Tasarımı ve Performansının İncelenmesi

YATAY EKSENLİ RÜZGAR TÜRBİNLERİNDE KONTROL SİSTEMİ

- En Üst Seviye Kontrol
- Orta Seviye Kontrol
 - Jeneratör Tork Kontrolcüsü
 - Kanat Yunuslama Açısı Kontrolcüsü
 - Nasel Sapma Açısı Kontrolcüsü
- En Düşük Seviye Kontrol

Şekil 1: Rüzgar türbini kontrol sistemi

TÜRBİN ÇALIŞMA BÖLGELERİ VE KONTROL AMAÇLARI

Şekil 2: Türbin çalışma bölgeleri ve kontrolü

ızaem.metu.edu.tı

MS BLADED RÜZGAR TÜRBİN SİMÜLASYON MODELİ

MS Bladed Modeli, yatay eksenli rüzgar türbinlerinin simülasyonu için geliştirilmiştir.

Modelde, türbülanslı hava akımı ile çalışma durumu, bükülmüş akım izi düzeltme formülü, kanat kök ve uç kayıpların etkisi de hesaplamalara dahil edilmiştir.

Modelin aerodinamik hesaplamaları, Prop Code, Wt_Perf and Aerodyn programlarıyla büyük ölçüde benzerlik göstermektedir.

MS (MUSTAFA SAHIN) BLADED MODEL

MS Bladed Modelin, türbin nasel sapma, bireysel ve kolektif kanat yunuslama hareketi özelliklerine sahiptir. Modelde, rotor koni ve nasel eğim açısı da tanımlanabilmektedir.

Şekil 3: Tek Kütleli Dinamik Türbin Sistemi

UAEROSPACE

Şekil 4: Özel Koordinat Sistemleri

MS (MUSTAFA SAHIN) BLADED MODEL

- Tasarımı bitmiş rüzgar türbinlerinin performansı üretilmeden detaylı bir şekilde incelenebilir.
- Türbinlerin farklı rüzgar şartlarındaki (normal ve aşırı türbülans) davranışları zamana bağlı olarak görülebilir.
- Türbinler, farklı geometrik açılarda (rotor koni, yunuslama açısı, nasel eğim açısı) ve rüzgara göre belirli bir sapma açısında çalıştırılabilir.
- Türbin kontrolcüleri tasarlanabilir, yeni kontrol algoritmaları geliştirilebilir ve bunların simülasyonları yapılabilir.

Şekil 4: Türbin simülasyonları

Şekil 5: Türbin üretimi

- Sahin, M., & Yavrucuk, I. (2017a). *Dynamical Modeling of a Wind Turbine System with Precone and Tilt Angles*., 9th Ankara International Aerospace Conference (pp. 1–11). Ankara, Turkey.
- Sahin, M. (2018). *Dynamic Modeling, Control and Adaptive Envelope Protection System for Horizontal Axis Wind* Turbines, PhD Thesis, Department of Aerospace Engineering, METU, Ankara.

RÜZGAR TÜRBİNİ KANAT YUNUSLAMA AÇISI KONTROLÜ

Şekil 6: Kanat yunuslama açısı blok diyagramı

RÜZGAR TÜRBİN SİSTEMİNİN LİNEERLEŞTİRİLMESİ

$$J_t \dot{\Omega} = \tau_{Aero} - \tau_{Gen} \tag{1}$$

$$\tau_{Aero}(U,\Omega,\beta) = \tau_{Aero}(U_e,\Omega_e,\beta_e) + \frac{\partial \tau_{Aero}}{\partial U}(U-U_e) + \frac{\partial \tau_{Aero}}{\partial \Omega}(\Omega-\Omega_e) + \frac{\partial \tau_{Aero}}{\partial \beta}(\beta-\beta_e) + \text{YMTler (3)}$$

$$\frac{\partial \tau_{Aero}}{\partial \Omega} = \gamma, \frac{\partial \tau_{Aero}}{\partial \beta} = \eta, \quad \frac{\partial \tau_{Aero}}{\partial U} = \mu, \tag{4}$$

$$J_t(\Omega - \Omega_e) = \tau_{Aero}(\Omega_e, \beta_e, U_e) + \gamma \Delta \Omega + \eta \Delta \beta + \mu \Delta U - \tau_{Gen}$$
(5)

$$J_t \dot{\Omega} = \gamma \Delta \Omega + \eta \Delta \beta + \mu \Delta U \tag{6}$$

$$\dot{\Omega} = \frac{Y}{J_t} \Delta \Omega + \frac{\eta}{J_t} \Delta \beta + \frac{\eta}{J_t} \Delta U \qquad (7) \qquad B = \frac{\eta}{J_t} \qquad (9) \qquad \dot{\Omega} = A \Delta \Omega + B \Delta \beta + B_d \Delta U \qquad (11)$$
$$B_d = \frac{\eta}{J_t} \qquad (10)$$

$$\Delta\beta(t) = K_p \Delta\Omega(t) + K_I \int \Delta\Omega(t) dt \qquad (12) \qquad \qquad s^2 + 2w_n \xi s + w_n^2 \quad (18)$$

$$\dot{\Omega} = A\Delta\Omega + B\Delta\beta + B_d\Delta U \qquad (11) \qquad \qquad 2w_n\xi = -A - BK_p \quad (19)$$

$$\dot{\Omega} = A\Delta\Omega + B(K_p\Delta\Omega(t) + K_I \int \Delta\Omega(t)dt) + B_d\Delta U$$
(13)

$$s\Omega(s) = A\Delta\Omega(s) + B\left(K_p\Delta\Omega(s) + \frac{K_I}{s}\Delta\Omega(s)\right) + B_d\Delta U(s) \quad (14)$$

METUAEROSPACE

$$G_{CL}(s) = \frac{\Delta\Omega(s)}{\Delta U(s)} = \frac{B_d s}{s^2 + (-A - BK_p)s + (-BK_i)}$$
(15)

$$-A - BK_p > 0 \tag{16}$$

$$-BK_i > 0 \tag{17}$$

$$K_p = \frac{-2w_n\zeta}{B} - \frac{A}{B}$$
(21)

 $w_n^2 = -BK_i \quad (20)$

$$K_i = \frac{-w_n^2}{B} \quad (22)$$

Şekil 7: Birim basamak rüzgar girişine türbininin rotor devri cevabı

Sönümleme	Doğal Frekans, w_n	Oransal Kazanç,	Integral Kazanç,	Sistem Kökü	Sistem Kökü
Oranı, ζ		K _p	K _I	1	2
0.4	0.6	0.2055	0.3084	-0.24-0.5500i	-0.24+0.5500i
0.7	0.6	0.5140	0.3084	-0.42-0.4285i	-0.42+0.4285i
0.8	0.6	0.6168	0.3084	-0.48-0.3600i	-0.48+0.3600i
1	0.6	0.8224	0.3084	-0.6	-0.6
2	0.6	1.8505	0.3084	-2.2392	-0.1608

11

Çalışma Noktaları	Rüzgar Hızı (m/s), U _e	Rotor Devri (rpm), $\Omega_{m{e}}$	Yunuslama Açısı(der), $oldsymbol{eta}_e$	Rotor Torku (Nm), $ au_e$
ÇN 1	18	12.1	14.9525	4180074.35
ÇN 2	16	12.1	10.5521	4180074.35
ÇN 3	13	12.1	6.7206	4180074.35
ÇN 4	11.5	12.1	2.2792	4180074.35
ÇN 5	12.6607	12.1	5.9676	4180074.35
ÇN 6	23	12.1	20.9964	4180074.35

Şekil 8: Lineer kontrolcünün diğer çalışma noktalarında testi

Şekil 9: Farklı rüzgar hızlarında aerodinamik torkun kanat yunuslama açısına göre değişimi

KAZANÇ ÇİZELGELEME METODU

Çalışma Noktaları	Rüzgar Hızı (m/s), U _e	Rotor Devri (rpm), $\Omega_{m{e}}$	Yunuslama Açısı (der), $oldsymbol{eta}_e$	Rotor Torku (Nm), $ au_e$
ÇN 1	18	12.1	14.9525	4180074.35
ÇN 2	16	12.1	10.5521	4180074.35
ÇN 3	13	12.1	6.7206	4180074.35
ÇN 4	11.5	12.1	2.2792	4180074.35
ÇN 5	12.6607	12.1	5.9676	4180074.35
ÇN 6	23	12.1	20.9964	4180074.35

İlk olarak, A, B, ve B_d , kazanç değerleri ÇN 4'te elde edilir.

A = -0.0554B = -0.2658 $B_d = 0.0227$

Doğal frekans ve sönümleme oranı sırasıyla 0.6 and 0.8 seçilirse,

$$K_{p} = \frac{-2w_{n}\zeta}{B} - \frac{A}{B} \quad (20) \qquad \qquad K_{p} = 3.4033$$
$$K_{i} = \frac{-w_{n}^{2}}{B} \quad (21) \qquad \qquad K_{i} = 1.3544$$

 $GK(\beta) = \frac{1}{\left(1 + \frac{\beta}{\beta_K}\right)}$

ÇN 5'te, β_K =5.9676 olarak elde edilir.

KAZANÇ ÇİZELGELEME METODU

DINLEDIĞINIZ İÇİN TEŞEKKÜRLER!

SİMÜLASYON SONUÇLARI

MS BLADED MODEL TAHMINLERI

Güç Tahminlerinin Karşılaştırılması, a) NREL Deneyleri ve MS Bladed Simülasyon Modelinin Güç Tahminlerinin Karşılaştırılması, b) PROPID ile MS BLADED Modelinin Güç Tahminlerinin Karşılaştırılması

